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Abstract. Despite consensus on the overall downward trend in Amazon forest loss in the previous decade, estimates of yearly
carbon emissions from deforestation still vary widely. Estimated carbon emissions are currently often based on data from local
logging activity reports, changes in remotely sensed biomass as well as remote detection of fire hotspots, and burned area. Here,
we use sixteen years of satellite-derived carbon monoxide (CO) columns to constrain fire CO emissions from the Amazon
basin between 2003 and 2018. Through data assimilation, we produce 3-daily maps of fire CO emissions over the Amazon
that we verified to be consistent with a long-term monitoring program of aircraft CO profiles over five sites in the Amazon.
Our new product independently confirms a long-term decrease of 54% in deforestation-related CO emissions over the study
period. Interannual variability is large, with known anomalously dry years showing a more than fourfold increase in basin-
wide fire emissions. At the level of individual Brazilian states, we find that both soil moisture anomalies and human ignitions
determine fire activity, suggesting that future carbon release from fires depends on drought intensity as much as on continued
forest protection. Our study shows that the atmospheric composition perspective on deforestation is a valuable additional
monitoring instrument that complements existing bottom-up and remote sensing methods for land-use change. Extension of
such a perspective to an operational framework is timely considering the observed increased fire intensity in the Amazon basin
in 2019-2021.
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1 Introduction

The role of Amazon forests in supporting biodiversity, regional ecosystem services, and carbon storage (Gloor et al., 2012)
is threatened by human activities, in the form of large-scale deforestation (Davis et al., 2020) and climate change. In Brazil
specifically, various studies suggest that, in recent years, deforestation rates and associated fire activity are once again accel-
erating (INPE, 2020; Pereira et al., 2020), after having reached a minimum around 2012 (Yin et al., 2020). Moreover, recent
droughts in 2010 and 2015/16 led to maxima in biomass burning (Silva Junior et al., 2019). Reliable monitoring of fire activity
and its impacts provide objective detection and mapping of deforestation, which helps in investigating underlying drivers. Such
information is key for developing efficient mitigation measures and for reducing fire risks.

Monitoring of fires primarily relies on remote sensing products such as fire counts (Wiedinmyer et al., 2011), albedo changes
(van der Werf et al., 2017), and Fire Radiative Power (FRP; (Kaiser et al., 2012)), which are partly related (Fanin and van der
Werf, 2015). Rapid and continuous processing of vast amounts of such data allowed recent unexpectedly high fire activity in
2019 to be detected and reported quickly (Lizundia-Loiola et al., 2020; Brando et al., 2020). However, fire dynamics are com-
plex, and products based on land remote sensing data are prone to miss small fires (Randerson et al., 2012; Ramo et al., 2021),
hampered by cloud cover (Schroeder et al., 2008), and might be poorly able to detect understory fires (Morton et al., 2013).
Understory fires in particular contribute strongly to forest fragmentation and mortality, and can increase forest vulnerability
to burning (Nepstad et al., 2001; Alencar et al., 2004). In addition to direct detection of fire activity, information is needed to
quantify the corresponding carbon loss to the atmosphere on scales from decades to seasons, and from the entire Amazon basin
down to individual Brazilian states.

During fires, a combination of pollutants is released into the atmosphere, the composition of which depends on local fire
conditions, but which generally includes a large contribution from carbon monoxide (CO). With an atmospheric lifetime of
1-3 months, CO is not well-mixed globally, so that fire emissions produce large and thus easily detectable enhancements
over the CO background concentration. Therefore, enhancements in CO over and around the Amazon basin can inform on the
frequency, intensity and location of fires. Moreover, the CO released from fires that escaped direct detection such as under
cloud cover, or in the understory, can still be detected. Finally, CO fire emissions can be linked to total carbon emissions and
emissions of other pollutants with the use of emission factors (e.g. Ferek et al. (1998); van Leeuwen et al. (2013)), giving
insights in climate and air quality impacts of fires.

Satellite data of CO are especially useful for quantifying and mapping fire emissions, due to their temporal and spatial detail,
and their availability in remote areas. In this work, we focus on the use of satellite-detected CO column retrievals from the
Measurement Of Pollution In The Troposphere (MOPITT) instrument (Deeter et al., 2019), which is an established product for
CO emission quantification (Jiang et al., 2017; Miyazaki et al., 2020). For the Amazon basin specifically, MOPITT CO data
were analysed previously to show that a long-term decrease over 2002-2016 in deforestation is partly counteracted by large
fires in drought years (Aragio et al., 2018; Deeter et al., 2018).

Here, we move beyond direct analysis of satellite data, and incorporate these data in the data assimilation system TM5-

4DVAR (Krol et al., 2005; Meirink et al., 2008). By linking satellite data to the 3D transport model TM5, we can map and
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quantify CO fire emissions in the Amazon with improved detail and accuracy. MOPITT CO satellite data were previously
analysed by Zheng et al. (2019) in a comparable modeling framework to assess the CO budget from 2000 to 2017 on a global
scale, and with a focus on fire emissions in Yin et al. (2020). Other data assimilation studies that were focused on South-
America have provided insight into fire and drought events, but generally covered shorter time-periods (Hooghiemstra et al.,
2012; van der Laan-Luijkx et al., 2015).

We first present fire emissions over the entire Amazon basin (Section 3.1.1), and then zoom in on individual Brazilian
states (Section 3.1.2), and on different landcover types (Section 3.1.3). This level of detail helps in better understanding and
quantifying differences between bottom-up and top-down estimates, and in assessing anthropogenic and natural contributions
to fire emissions. An important asset of our analysis is a detailed investigation of the uncertainties in the Bayesian inverse
system. To this end we investigate the influence of components such as the prior fire CO emission inventory, natural production,
loss fields, and we additionally assimilate a different satellite product. Uniquely, we independently assess our MOPITT-based
emission estimates, as well as those from the GFAS bottom-up inventory, using a multi-year CO record from an aircraft whole

air flask sampling network in the basin (Gatti et al., 2014, 2021) (Section 3.2.2).

2 Methods
2.1 Transport model

We operate the atmospheric transport model TMS5 (Krol et al., 2005) at a global resolution of 6° longitude by 4° latitude.
We additionally use the zoom capability of the TM5 model to include two nested regions over South-America, in a set-up
similar to van der Laan-Luijkx et al. (2015) (see Fig. 1). The inner zoom domain (red in Fig. 1), with a resolution of 1° by
1°, spans longitudes from 75°W to 39°W and latitudes from 28°S to 8°N. The outer zoom domain (green in Fig. 1), with a
resolution of 3° longitude by 2° latitude, spans longitudes from 84°W to 30°W and latitudes from 34°S to 14°N. Note that we
present most results for the inner zoom domain only. All regions are operated with 25 vertical layers, covering the range from
surface pressure to top of the atmosphere, with typically 3—6 model layers in the planetary boundary layer. Transport in TMS
is driven by 3-hourly, offline meteorological fields from the ERA-Interim reanalysis from the European Centre for Medium

Range Weather Forecasts (ECMWF) (Dee et al., 2011).
2.2 Prior source and sink fields

We performed 2003-18 inversions with three prior fire inventories: the Global Fire Assimilation System (GFASv1.2; Kaiser
et al. (2012)), the Fire INventory from NCAR (FINNv1.5; Wiedinmyer et al. (2011)) and a climatological (i.e. annually repeat-
ing) prior based on the average emission distribution in GFAS (hereafter referred to as CLIM). The GFAS emission distribution
is provided on 0.5° by 0.5°resolution, and the FINN distribution is available at ~ 1 km by 1 km resolution, but we regrid both
to our model resolution. The GFAS and FINN inventory use different data from the Moderate Resolution Imaging (MODIS)
satellite as a proxy for the global, daily fire distribution: for GFAS fire radiative power (FRP); for FINN active fire counts.
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Figure 1. A map of the South-American zoom regions used in the TM35 simulations. The green and red grids indicate the 3° longitude by 2°
latitude and 1° longitude by 1° latitude zoom regions, respectively. Over both zoom regions satellite data are assimilated. Filled stars indicate
NOAA Global Greenhouse Gas Reference Network surface sites, from which surface observations are assimilated to constrain global CO
emissions, and by extent the boundary conditions of the zoom domains. Filled circles indicate sites where discrete whole air samples were

collected by aircraft at various altitudes. The whole air sample calibrated CO data are used for independent evaluation of the inversions.

Both inventories overlay these proxies with landcover maps from the MODIS instrument, and use landcover-specific emission
factors for CO (and other species) to produce the emission estimates we use. However, the exact landcover classifications and
emission factors used differ between the two inventories. We use the inversions that start from the GFAS prior as reference,
and discuss the differences between the fire priors where relevant.

Fire emissions retrieved in our inverse system are informed both by the prior emission distribution (e.g. GFAS) and by the
assimilated observational data (e.g. MOPITT). To assess the importance of either component we have constructed a climato-
logical prior (CLIM), which includes no interannual variability and no spatial gradients. As such, variability in the posterior
emissions retrieved in the CLIM inversions is driven exclusively by the assimilated CO data and atmospheric transport. Since
we optimize CO fire emissions at three-day resolution (Section 2.6), we also construct the CLIM prior at three-daily resolution.
We construct the CLIM prior as follows. First, we average the daily CO emission fields from GFAS over the 2003-2018 period.
Next, if in a three-day period the total CO emissions in a grid cell are less than 0.03 Tg, the emissions in that grid cell and three-
day window are set to zero. Finally, three-daily total fire emissions inside the 1° by 1° zoom domain are divided uniformly over

those grid cells that initially had emissions higher than 0.03 Tg. In this way, approximately 24% of the inner domain grid cells
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still contain emissions. We choose this approach to prevent spatial gradients in the GFAS estimate from influencing posterior
emissions, which is balanced by the 0.03 Tg lower limit to retain some potential to recover high, localized emissions from the
CLIM prior. Outside the 1° x 1° zoom domain, the CLIM prior still includes interannually varying GFAS emissions.

All fire emissions (GFAS, FINN and CLIM) are distributed vertically in the simulations following vertical emission profiles
derived in the Integrated System for wild-land Fires (IS4FIRES) (Soares et al., 2015). Different from the horizontal emission
distribution, the vertical emission distribution does include diurnal variability. In a sensitivity test we have found that including
a diurnal cycle in only the vertical emission distribution produces results that are comparable to including diurnal variability in
both the horizontal and vertical distribution of CO fire emissions (results not shown). Therefore, we do not impose sub-daily
variability on the native daily resolution of GFAS and FINN emissions in the simulations.

For chemical production of CO from methane (CH4) and from non-methane volatile organic compounds (NMVOCs), we
use fields generated in a 2006 simulation in the full-chemistry version of TM5 (Huijnen et al., 2010). We use anthropogenic CO
emissions from the Monitoring Atmospheric Composition and Climate Cityzen (MACCity) inventory (Lamarque et al., 2010).
The annually repeating, monthly hydroxyl radical (OH) concentration fields are a combination of tropospheric OH fields from
(Spivakovsky et al., 2000), scaled by 0.92 as recommended in (Patra et al., 2011), and stratospheric OH fields derived in the
2D Max Planck Institute for Chemistry (MPIC) chemistry model (Briihl and Crutzen, 1993). In Sect. 3.3.3, we discuss the

sensitivity of the inversion results to the chemical CO production and to the OH distribution.
2.3 Satellite retrievals

In the reference inversions, we assimilate CO column retrievals from the Measurements Of Pollution In The Troposphere (MO-
PITT) instrument, version 8 (Deeter et al., 2019) over both South-American zoom domains. MOPITT retrieves CO columns
using both the CO absorption band in thermal infrared (TIR) at 4.7 pm, and in near infrared (NIR) at 2.3 um. In this work, we
only use CO columns retrieved in the TIR band. MOPITT has a swath of 22 by 650 km, with 116 cross-swath pixels, with a
daily overpass between 1.00 and 3.30 local time each afternoon and night for the inner zoom domain. Following Nechita-Banda
et al. (2018), we inflate column errors reported by the MOPITT team with a factor /50 to compensate for the high number of
satellite data (~ 10.000/day in both zoom domains combined), relative to the number of surface observations (~ 150/month;
see also Sect. 2.4). CO columns are sampled from the transport model using the MOPITT averaging kernels.

In Sect. 3.3.1, we present inversions in which satellite data from the Infrared Atmospheric Sounding Interferometer (IASI)
instrument (Clerbaux et al., 2009) are assimilated instead of MOPITT. IASI retrieves CO columns exclusively in the TIR
waveband, with a 12 x 4 km footprint at nadir. Identical versions of the IASI instrument fly on-board of three operating
platforms (Metop-A, -B and -C), but in this work we limit ourselves to the Metop-A data, which covers the longest time
period. Importantly, while TASI and MOPITT exploit similar wavebands, they use different measurement techniques (George

et al., 2015). The overpass time of IASI typically precedes the MOPITT overpass time by one hour.



125

130

135

140

145

150

155

https://doi.org/10.5194/egusphere-2022-450
Preprint. Discussion started: 10 June 2022 EG U
sphere

(© Author(s) 2022. CC BY 4.0 License.

2.4 Surface observations

To constrain global emissions of CO outside of the model zoom domains, we assimilate CO mole fraction observations from the
surface whole air flask sampling network (40-45 sites) of the NOAA Global Greenhouse Gas Reference Network (GGGRN)
(Petron et al., 2019). We use a fixed observational error of 2 ppb CO per flask pair average, with no model error. We choose
not to adopt a model error for surface observations, since this would only require further inflation of the error in satellite data

(see above). We test the effect of reducing this observational error to 0.2 ppb CO in Supp. 1.
2.5 Aircraft observations

We use a set of aircraft observations over the Amazon for independent validation of the inverse results over the 2010-2017
period. Atmospheric air samples were collected at a range of altitudes over five sites in the Brazilian Amazon (Gatti et al.,
2014, 2021). The Tabatinga site (TAB) was replaced in 2013 by Tefé (TEF), and we generally group these two sites in our
analysis. Site locations are indicated in Fig. 1 and Fig. 6. The sampling flights were performed using small aircraft, typically
two times per month, between 12—13 hr local time, in a descending helicoidal profile that avoids sampling emissions from
the aircraft. One profile typically includes 12—17 air samples between 300 m and 4500 m height above sea level (Gatti et al.,
2014, 2010). The concentrations of the aircraft samples are analyzed since 2015 at INPE (Sdo José dos Campos, Brazil) -
LaGEE (Greenhouse gas laboratory) and before this time at IPEN in an Atmospheric Chemistry Laboratory in Sdo Paulo.
The LaGEE uses standards calibrated against the World Meteorological Organization reference scales maintained by NOAA
Global Monitoring Laboratory (i.e. the same calibration scale that is used for NOAA GGGRN surface observations). In the
period during and after this transition (2015-16), operation of the aircraft network was partly interrupted (see also the right-
most column in Fig. 6). A 2010-2013 subset of these aircraft data was previously used for direct validation of MOPITT CO
data (Deeter et al., 2016). However, since we sample both satellite and aircraft data from a 3D-simulated atmosphere, our

validation accounts more realistically for the different vertical sensitivities of the two datasets.
2.6 Optimization procedure

We employ the TM5-4DVAR inverse system (Meirink et al., 2008) to optimize CO emissions between 2003 and 2018 in
16 separate inversions, which each cover the April-December period of 1 year (i.e. centered on the Amazon fire season).
Simulating 9 instead of 12 months greatly improves the speed of convergence of the inversions, since the complexity of the
inverse problem scales non-linearly with the number of assimilated observations and optimized state elements. Since Amazon
fires occur mostly between June and November, this set-up still provides us with a one-month spin-up and spin-down period.
The CO satellite data are only assimilated inside both zoom domains over South-America. In the zoom domains, we optimize
three-day total CO fire emissions, with a relative grid-box error on the emissions of 250%, a horizontal correlation length of
200 km and a temporal correlation of three days. Total emissions in the global domain are constrained mainly from NOAA
surface observations, and are optimized with a prior uncertainty of 250%, and with a horizontal and temporal correlation

of 1000 km and 9.5 months, respectively. Emissions are optimized non-linearly, following a semi-lognormal distribution, to
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prevent negative posterior emissions, as in Bergamaschi et al. (2009). Since the 4DVAR system does not produce posterior
error covariance matrices for a non-linear system, we instead explore the uncertainties of the inverse system in sensitivity tests
(e.g. adjusting the prior emission distribution, adjusting the observational errors and assimilating a different satellite product;

see Sect. 3.3 and Supp. 1 and 2).
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3 Results
3.1 Flux analysis

3.1.1 Basin-wide Amazon fire emissions
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Figure 2. Prior and posterior fire CO emission estimates summed over the 1° by 1°, South-American zoom domain (see Fig. 1). Top panel:
May-Dec total emissions per year. Bottom panel: Monthly total emissions, with colors distinguishing prior (green) from posterior (orange),
and line-style indicating the prior used. Shaded areas mark the spread between the three priors and the three posteriors respectively. Note that

the posterior estimates mostly overlap, so that these are visible as one line only.

The inverse system retrieves annual total (May—Dec) fire emissions that vary strongly interannually (top panel in Fig. 2).
Typically, GFAS, FINN and the posterior estimates show highest and lowest emissions in the same years. However, the posterior
interannual variability is significantly larger than the prior variability, and especially in high-emission years prior inventories
underestimate the emissions that are needed to match the MOPITT CO data.

The spread between posterior estimates is significantly lower than the spread between prior estimates. This is an especially
noteworthy result for the inversions based on the CLIM prior, which does not include any interannual variability. This result
shows that the posterior variability is almost exclusively driven by MOPITT data and TMS transport, rather than by prior infor-
mation from the fire inventories. Therefore, we consider that the overall agreement between the prior and posterior interannual

variability shows that the fire inventories are generally well able to identify high-emission years.
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The fire emissions show a strong seasonal cycle (bottom panel in Fig. 2), with low emissions in April-May and December
in most years, in both the prior and posterior emission estimate. This finding generally supports the use of a 9-month inversion
period, and confirms that treating April and December as spin-up and spin-down months, respectively, does not strongly affect
the annual total CO fire emissions.

In this 16-year record, 2015 is the year that breaks from these general conclusions. Firstly, while it does not show up as
a high-emission year in GFAS and FINN, it does show up as a high-emission year in all posterior estimates. Additionally, it
is the only year with high emissions in November and December. Therefore, it is possible that the 2015 estimate is affected
by spin-down effects and that we miss emissions in early 2016. However, in an inversion from Nov 2015 to May 2016, we
find that the Jan 2016 emissions are low, and that Dec 2015 emissions are not significantly affected by extending the inversion

window (results not shown).

3.1.2 Fire emissions in Brazilian states
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Figure 3. Interannual variability in area-average soil moisture and fire CO emissions in five Brazilian states. The four outside panels show the
2003-18 timeseries of May—December total CO emissions from biomass burning (left axis, in orange and green) and annual averaged root-
zone soil moisture from the GLEAM v3.3a product (right axis, in blue), for five Brazilian states. A year is defined here as June—-December,
i.e. centered on the dry season. Both prior (green) and MOPITT-optimized (orange) fire CO emissions are shown, for the three inversions that
start from different prior fire inventories (indicated by solid, dashed and dash-dotted lines). Shaded areas indicate the spread between the fire
inventories before (green) and after (orange) the inversion. Also shown at the top are the correlation coefficients R? between CO emissions
and soil moisture for the optimized emissions from the inversion that start from the GFAS inventory. Maranhdo and Tocantins are combined,
since they are smaller states that represent similar regimes in terms of climate and anthropogenic activity. Note the different y-scales between

the four figures, with lowest emissions in Amazonas. The centre figure shows a map of these five Brazilian states.

We have quantified interannual variability in fire CO emissions for five Brazilian states to assess these emissions at a sub-
basin scale (green and orange lines in Fig. 3). As an indicator of relative drought between years, we have also shown the local
root-zone soil moisture anomalies, as provided by the Global Land Evaporation Amsterdam Model (GLEAM v3a (Gonza-

lez Miralles et al., 2011; Martens et al., 2017); blue lines and right axes in Fig. 3). Mato Grosso and Pard make up most of
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the Brazilian Arc of Deforestation, and Maranhdo and Tocantins (grouped in our analysis) are on the edge of it. Amazonas
represents a more pristine area in the Amazon basin. Together, these five states cover most of the Brazilian Amazon.

We find a strong link between interannual variability in optimized CO fire emissions and local soil moisture anomalies.
Interannual variations in CO emissions are markedly different per state and, in general, years with low soil moisture levels show
high fire emissions. For example, the 2010 fires are mostly located in Mato Grosso, while the 2015/16 fires are concentrated
in Pard and Maranhao/Tocantins, which coincides with local, negative anomalies in soil moisture. The GFAS and FINN prior
emissions are similarly anti-correlated with soil moisture. However, we also find a similar correlation for the CLIM inversions
(result not shown), which does not include prior interannual variability. This result confirms that our inverse set-up can retrieve
state-level interannual variability independent from prior assumptions. Moreover, especially in 2015, emissions are strongly
adjusted in the inversion, and this coincides with local negative soil moisture anomalies.

We have quantified the correlation between the optimized GFAS emissions and soil moisture anomalies, and we find that it
is significant for all states, at significance level p=0.05 (correlation coefficients per state are shown in Fig. 3). The correlation
coefficients are largely insensitive to the averaging approach for soil moisture (e.g. selecting the annual minimum value, or
averaging over fewer months). Previous work had already established a strong link between fire emissions and soil moisture
(e.g. Asner and Alencar, 2010; Silva et al., 2018), but the strength and consistency of the anti-correlation we find here, at the
level of individual states, is noteworthy. Of course, drought is not the only determinant of fire emissions, and in Section 3.1.3
we explore the role of deforestation.

Similar to the basin-wide emissions (Fig. 2), we find that spread between posterior estimates at state-level is much reduced
compared to the spread between prior estimates. The posterior estimates do not only agree in their interannual variability, but
also in the spatial allocation of the emissions between states. For example, the GFAS emissions in Amazonas are much lower
than the FINN emissions, yet our inverse results converge towards the lower GFAS estimate. This shows that not only the

Amazon-total fire CO emissions, but also their spatial allocation are well-constrained by the inversions.
3.1.3 Longterm trends and landcover type

We observe a significant downward trend in the MOPITT-derived CO emissions over our full inner zoom domain (Fig. 4b),
which is largely insensitive to the prior inventory used in the inversion. We focus here on five-year averaged emissions, to
visualize the clear downward trend that is otherwise partly masked by interannual variations in emissions (e.g. Fig. 3). We
disaggregate the trend between forests and savanna, based on annual landcover data from from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) Land Cover Climate Modeling Grid (CMG), Version 6 (Sulla-Menashe et al., 2019) (Fig. 4).
We find that the decrease over the study period (between the 2003—2007 and the 2014-2018 averaged fire CO emissions) is
larger over forest (~ 54%) than over savanna and shrublands (~ 39%), and the stronger trend over forests is matched in magni-
tude and sign by a decrease in the independently derived estimates of deforestation from the Brazilian Amazon Deforestation
Monitoring Program (PRODES; (INPE, 2020)). The PRODES deforestation rates quantify the area deforested each year, that
had not been deforested before. Notably, both deforestation rates and fire emissions have stopped decreasing since ~2012.

Deforestation, and especially the narrow definition used in PRODES, does not always overlap with fires, for example when

10
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South-America, with landcover types retrieved from the MODIS product, at 0.1° by 0.1° resolution. We distinguish between forest (green),
and savanna and shrublands (yellow). Grid cells covered by less than 70% of both are shown in gray. The map covers the 3° by 2° zoom
region used in TM3, and the black outline indicates the 1° by 1° zoom region, which is the focus of our study. The area of the black circles is
proportional to how much CO is added in the inversion to the GFAS prior emissions, over the 2003-2018 study period. Panel b: Timeseries
of five-year averaged annual total CO emissions from biomass burning over the 1° by 1° TM5 zoom domain for two landcover types: forest
(in green) and savanna/shrublands (in yellow). Emission totals are scaled to the emissions in the first five-year window (see left y-axis), which
is centered on 2005. Also shown are five-year averaged deforestation totals (black, right axis), as retrieved from the the Brazilian Amazon
Deforestation Monitoring Program (PRODES). Note that the area used for PRODES deforestation rates is different from the forest-mask we
use for emission attribution, as PRODES, among other differences, only quantifies deforestation in Brazil. Panel ¢: Box-plot that shows how
much annual total emissions over each landcover type are adjusted through optimization with MOPITT satellite data. This can be compared

to the black circles in Panel a.

fires occur in reforested areas, or when cut forest is burned with delay or not at all. However, most fires are in some way caused
by local anthropogenic activity, for which deforestation is a good proxy. The close match in trends shows that fire abatement
policies do reduce fire emissions, but this is often masked by interannual, drought-driven variations. This conclusion confirms
similar assessments in earlier MOPITT-based work (Aragdo et al., 2018; Deeter et al., 2018), but here, with the use of the
TM5-4DVAR inverse system, we are able to quantify both the decrease and drought-driven interannual variations.

The prior CO emissions from both GFAS and FINN are too low to reproduce MOPITT CO column retrievals in all years, for
all landcover types, but the underestimate is much stronger over savanna and shrublands than over forests (Fig. 4c and black
circles in Fig. 4a). A strong systematic underestimate over savanna/shrublands is indicative of underestimated CO emission
factors and carbon stock, since other explanations, such as missed small fires or understory fires, are more likely to impact

emission estimates from forests. We do note that the amplitude of the underestimate over savanna/shrublands (median 67%) is
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large compared to typical uncertainties in emission factors (e.g., van Leeuwen et al. (2013)) and carbon stock. As noted earlier,
we find that emissions in dry years, such as 2010 and 2015, are underestimated more strongly than emissions in wet years. We
find that the FINN and GFAS inventories underestimate fire emissions most strongly in 2015, which could in part be driven
by the timing of these fires. The 2015 fires continued into November and December (see Section 3.1.1): months that typically

have more cloud-cover, which inhibits direct fire detection.
3.2 Comparison to observations

In this section, we assess the skill of our prior and posterior simulations to reproduce the assimilated satellite data, as well as
independent aircraft profiles of CO. A comparison with surface observations is presented in Supp. 1. Results presented in this
section are largely insensitive to the prior fire inventory used, which is why we only present results from the reference GFAS

inversions.

3.2.1 MOPITT satellite retrieval

——— Observed Prior Posterior

=
N
o

MOPITT CO
columns [ppb]
-
o
o

[=))
o

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

CO columns [%]
o

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Simulated — Observed

Figure 5. A comparison between simulated and MOPITT-retrieved CO columns for the GFAS reference inversion. Top panel: TMS5-simulated
and MOPITT-retrieved CO columns, averaged over the inner 1° by 1° zoom domain and at three-daily time resolution. Note that the posterior
simulation and the MOPITT-retrieved CO columns largely overlap, such that the latter is poorly visible. Bottom panel: The relative difference
between satellite-retrieved and simulated MOPITT CO columns, in a simulation with the prior GFAS emissions (green) and after the MOPITT
CO column retrievals have been assimilated to optimize fire emissions (orange), averaged as in the top panel. The difference between

simulated and observed columns is quantified as a percentage of the average satellite-retrieved CO column.

The MOPITT-retrieved CO columns show a distinct seasonal cycle that in most years peaks in September (Fig. 5, top panel),
similar to the fire emissions (Fig. 2). In the prior simulations, we find significant differences between the domain-averaged
simulated and satellite-retrieved CO columns (Fig. 5, bottom panel). In the posterior, these differences are reduced to less
than 2% of the observed columns. The nine-month inversion window does show a spin-up period of approximately one month
in which the difference is larger, since we do not optimize the initial CO distribution. The posterior agreement between the

simulations and the MOPITT data confirms that with adjustments in biomass burning emissions inside the zoom domains and
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with adjustments in total emissions outside, we can reproduce satellite-retrieved MOPITT CO columns in our simulations
within their observational errors.

Differences between simulated and observed columns in the prior simulation are indicative of the types of adjustments
in CO emissions that are needed to reproduce observed columns. Firstly, simulated CO columns outside the dry season are
systematically too high, by about 8-15%. Secondly, superimposed on this systematic overestimate, we find that the peaks in
CO column retrievals during dry season are underestimated in the prior simulations. The overestimate we attribute largely to
too-high secondary production of CO (further discussed in Supp. 2.1). Since we do not optimize secondary production in our
inversion, the overestimate is largely corrected by adjusting emissions outside the inner zoom domain, which are only loosely
determined by the NOAA surface observations (see Sup. 1). The prior underestimate of the dry-season peak in CO is most

likely related to fire emissions, and we indeed find that fire emissions are increased after data assimilation (Section 3.1.3).
3.2.2 Validation with aircraft profiles

Whole air flask sampling flights were conducted over five sites in the Amazon basin between 2010 and 2017 (Gatti et al.,
2021). We compare the TM5-simulated CO mole fractions to those measured from the samples of vertical profiles (Fig. 6).
This independent validation clearly shows an improved overall match after assimilation of the MOPITT-retrieved CO columns.
In simulations with prior GFAS emissions we find a site-averaged bias of —62 ppb, which reduces to —19 ppb after the opti-
mization (visible in left columns of Fig. 6). This improvement confirms that the prior GFAS emissions are too low to reproduce
observations. For Santarém the residual bias is largest (=32 ppb CO after optimization), but MOPITT CO column retrievals
over the same region are matched well after optimization (Supp. 3). We do find a significant absolute residual error between
simulated and observed aircraft profiles, which can be explained by the relatively coarse resolution of the transport model (1°
by 1° with 25 vertical layers; see Methods), which puts a limit on how well individual aircraft samples can be represented in
TMS5. However, we find that, in general, the MOPITT-derived emissions much improve the agreement with independent aircraft
profiles at five different locations across the Amazon, compared to the GFAS prior. This gives us confidence that our inver-
sion improves estimates of CO emissions from fires across different regions of the Amazon Basin, for example for different

Brazilian states (Section 3.1.2).
3.3 Sensitivity tests
3.3.1 Assimilating IASI instead of MOPITT satellite data

We have performed additional inversions in which we assimilate CO column retrievals from the IASI-MetopA instrument
(Clerbaux et al., 2009). We find that before 2014, MOPITT-derived emissions are slightly higher than IASI-derived emissions
(6-12 Tg COlyear), while after 2014 IASI-derived emissions are significantly higher than MOPITT-derived emissions (15-30
Tg/year). Within each of these two time periods the difference between interannual variability in IASI- and MOPITT-derived

emissions is small (~10 Tg/year) relative to this jump (~30 Tg/year).
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Figure 6. Comparison between simulated and observed aircraft profiles over five sites in the Amazon. Profiles sampled over Tabatinga and
Tefé are combined, since they represent similar air masses and have complementary temporal coverage (Tabatinga up to 2013; Tefé after
2013). The profiles cover the 2010-17 period, and we have included only profiles sampled between August-November. Left column: Time-
averaged (2010-2017) simulated (prior in green; posterior in orange) and observed (black) aircraft profiles, binned in 500 meter intervals.
Grey shaded areas show one standard deviation of the variability between the individual, observed aircraft profiles. Center column: Maps of
the influenced area of each site, or site combination. Black dots indicate site locations, and the red area indicates the origin of air at the site
location. Red areas are proportional to the logarithm of the number of back-trajectories that originate at the sampling location and altitude,
and then pass through a grid cell, as determined from simulations in the HY SPLIT model. Further details are provided in (Gatti et al., 2010).
Backtrajectories from the Lagrangian grid in the HYSPLIT model were interpolated to the TM5 1° by 1° grid. Right column: Violin plot of
the absolute difference between observed and simulated aircraft samples of CO, in a simulation with GFAS (green) and in a simulation with

MOPITT optimized biomass burning emissions (orange). Dashed lines inside each violin indicate the median and the two inner quartiles.
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Figure 7. Total CO emissions from biomass burning summed over the 1° x 1° South-American zoom domain, and over the April — December
inversion period. Results for two sets of inversions are shown, which each started from the GFAS fire prior. The first is the default inversion
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Figure 8. The difference between satellite-retrieved MOPITT CO columns and MOPITT CO columns sampled in a simulation that used
CO emissions optimized with IASI-retrieved CO columns, over the 1° by 1° South-American zoom domain. The difference is quantified

as a percentage of the satellite-retrieved CO columns. The date where IASI switches between two meteorological datasets (2014/09/30) is

indicated, and on this date a jump in the difference between simulated and satellite-retrieved MOPITT CO columns occurs.

We have sampled MOPITT columns in simulations with IASI-optimized biomass burning emissions to investigate the tim-
ing of this jump (Fig. 8). Over 2010-2013, simulated MOPITT CO columns are in good agreement with those retrieved by
MOPITT, which indicates consistency between the MOPITT and IASI records. However, in 2014 a jump occurs, after which
simulated MOPITT columns become biased high, which is consistent with the difference in emissions. The onset of this bias
of around 8% occurs instantaneously on 2014/09/30, as indicated in Fig. 8. Over the 2010-2018 period, several changes have
been made to the IASI retrieval that can cause inconsistencies (e.g. Table 2 in Bouillon et al. (2020)), and a major update to
the processing algorithm that was implemented on 2014/09/30 apparently has a particularly large impact on the retrieved CO
columns. Based on the coincidence of these two events, we consider the switch in IASI-MOPITT offset to be an artifact in the

TASI data record.
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We conclude that as long as the IASI retrieval does not use a consistent meteorological dataset, the retrievals before and
after 2014/09/30 are best treated as two separate data records. Currently the IASI team is finalizing a full reprocessing of the
CO Metop-A record, using the ERAS reanalysis as input for temperature profiles in order to generate a homogeneous record.
The resulting consistent IASI product will provide better grounds for an uncertainty estimate of the driver satellite data, which
is currently more difficult to perform. We do consider the relative consistency in interannual variability between IASI and
MOPITT, excepting the 2014 break, evidence for robustness of interannual variability in CO emissions derived from either
satellite product. The systematic difference between MOPITT and IASI is a measure for systematic uncertainty in the satellite

data and its impact on derived annual total fire CO emissions, which amounts to 10—30 Tg/year for the inner zoom domain.

3.3.2 Integrated comparison to Zheng et al. (2019)
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Figure 9. Emission totals for different source categories from this work, compared to emissions from Zheng et al. (2019). Total CO emissions
are summed over the 1° x 1° South-American zoom domain, and over the April — December inversion period. For bars corresponding to this
work, emissions from our standard inversion are shown (i.e. GFAS fire emissions optimized with MOPITT-retrieved CO columns), as well
as emissions from a global MOPITT inversion performed by Zheng et al. (2019). Emission categories from Zheng et al. (2019) were merged

to obtain emission categories comparable to ours.

We have additionally compared our derived CO emissions to those derived by Zheng et al. (2019). Their emission estimate,
covering 2000-2017, was derived in an inversion that also assimilated MOPITT-TIR CO column retrievals. However, that is
the only shared aspect of our two inverse set-ups. Their inversion assimilated MOPITT CO column retrievals globally, which
will result in different boundary conditions for the Amazon domain than assimilation of surface observations. Additionally,
their inversion was performed at a different spatial resolution (3.75° longitude by 1.9° latitude, with 39 vertical layers), in a
different transport model (LMDz-SACS (Pison et al., 2009)). As a prior for fire CO emissions, they used emissions from the
Global Fire Emissions Database (GFED) 4.1s (van der Werf et al., 2017). Prior OH fields used in Zheng et al. (2019) were
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the same as ours, but theirs were optimized with methyl chloroform surface observations. Additionally, they used biogenic
CO emissions from the MEGANV2.1 inventory, which, as discussed in Supp. 2.1, differ significantly from those used in our
inversions. Further details on their inverse set-up are provided in Table 1 of Zheng et al. (2019). We limit our comparison
to emissions derived in Inversion 1, as described in Zheng et al. (2019), in which satellite retrievals of formaldehyde and of
methane were not assimilated.

We find that biomass burning emissions derived in Zheng et al. (2019) are comparable to ours, both in absolute magnitude and
in interannual variability (red bars in Figure 9), with an average annual total difference of —3.0£6.7 TgCO/year (one standard
deviation). This difference is small compared to interannual variability. Notably, their emission estimates of CO from biomass
burning are also systematically higher than those from GFAS and FINN. Different from our inversions, the MEGANvV2.1
inventory for biogenic emissions includes interannual variability, and these emissions are significantly lower than the biogenic
emissions that we have used (see also Fig. S3). The excellent agreement between these two largely independent estimates

provides much confidence to the final emission estimates.
3.3.3 Other sensitivities in the inverse system

We have additionally explored the sensitivity of derived emissions to other, individual components of the inverse system, which
are presented in detail in Supp. 2. Here, we briefly summarize the main conclusions from these sensitivity tests. We find that
natural production of CO from non-methane volatile organic compounds (NMVOCs) is the largest sensitivity in our inverse
system (Sup. 2.1), with an associated systematic uncertainty in derived fire CO emissions of 23-27 Tg/year. The associated
uncertainty in interannual variability of fire CO emissions at 10—15 Tg/year. We additionally find a large sensitivity to the OH
sink of CO, but we attribute this mostly to unrealistically low OH values in the fields from the CAMS reanalysis that we use
for the sensitivity test (Sup. 2.2). Finally, we find that if we reduce the error on NOAA surface observations, we retrieve a
better posterior match with these data, without changing the derived fire emissions. This result indicates limited sensitivity to
boundary conditions as determined by surface observations that are sampled mostly outside the domain in which we assimilate
satellite data.

Overall, we conservatively estimate the uncertainty in the interannual variability of the MOPITT-derived CO emissions of
biomass burning at 10-15 TgCO/year, and the systematic uncertainty at 30 TgCO/year, which is dominated by production
from NMVOCs. We consider this uncertainty estimate conservative, since the integrated comparison with Zheng et al. (2019)
suggests a lower uncertainty of 7 TgCO/year (Sect. 3.3.2). A small uncertainty is somewhat intuitive, since fire emissions are
uniquely sharp in location and timing, and this signal is well captured in the MOPITT data. Therefore, fire emissions are only

partly interchangeable with other, typically more diffuse budget components.
3.4 Discussion

The robustness of derived emissions signifies the detail provided by the MOPITT-TIR product. In addition to the TIR product,
MOPITT also provides a NIR product and a combined NIR-TIR product. The NIR product has relatively higher vertical

sensitivity near the surface. Due to its range of spectral bands, MOPITT data can be used to separately constrain upper and
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lower tropospheric CO (Deeter et al., 2018). Here, we have limited our analysis to the TIR product, which already provides
strong constraints on CO fire emissions. Nechita-Banda et al. (2018) showed that over Indonesia the TM5-4DVAR inverse
system produces similar fire emissions when MOPITT-TIR or NIR-TIR are assimilated. Peiro et al. (2022) performed a global
CO inversion with MOPITT NIR-TIR data and found South American fire emissions that were typically lower than ours.
Therefore, in future work, it would be interesting to investigate the added value of NIR in the NIR-TIR product in more
detail. Additionally, we use MOPITT version 8, but recently the newer MOPITTV9 version has become available (Deeter et al.,
2021). Importantly, the changes made in the retrieval result in significantly improved coverage over areas with high aerosol
concentrations, which are also emitted in fires. Clearly, improved coverage near fires will strongly benefit our inverse analysis,
and future work can benefit from these improvements.

Our fire emission estimates rely strongly on the quality of the MOPITT CO retrieval. The MOPITT CO data have been
validated extensively (Deeter et al., 2016, 2019), and in this work we again present a good agreement with independent aircraft
profiles. Other CO satellite products are available, which can complement a MOPITT-based analysis. Firstly, we presented a
comparison to inversions that use IASI instead of MOPITT CO data (Section 3.3.1). This comparison reveals inconsistencies in
the reprocessing used for IASI, but the interannual variability derived from the two products within the 2010-2013 and 2015-
2018 periods is similar. A consistently processed IASI product, which is something that the IASI team is finalizing, will help
better assess the MOPITT-derived emissions. Additionally, an expanding fleet of satellite instruments is becoming available,
which monitor atmospheric composition with increasing detail. This can help with cross-validation, and new satellites, such
as TROPOMI (Borsdorff et al., 2018), also have higher spatial resolution, providing a potential step forward in the level of
detail on which fire emissions can be inferred (van der Velde et al., 2021). We do note that in this work we draw value from
the long-term availability and consistency of the MOPITT product, which is something that other products currently cannot
compete with.

An important application of top-down estimates of CO fire emissions is to propagate these to CO; fire emissions, so that the
Amazon carbon balance can be better constrained. In previous work, this has been done by directly applying CO:CO; emission
factors from bottom-up inventories to the updated CO emissions (van der Laan-Luijkx et al., 2015; Peiro et al., 2022). In our
case, this would mean that the COs, fire emissions over the Amazon in the GFAS and FINN inventories would be scaled up,
since we find that CO emissions in these inventories are underestimated. Whether this approach is appropriate strongly depends
on the driver of the underestimate we have found. Scaling up the CO, emissions based on our CO inversion is appropriate if
the underestimate of CO fire emissions is related to missed understory fires (Alencar et al., 2004), or to an underestimate in
carbon stock. However, if the underestimate is related to errors in the CO emission factors (van Leeuwen et al., 2013), then
the total carbon emissions reported in the bottom-up inventories could still be accurate. As a first indication, we find that the
underestimate in GFAS is largest over savanna and shrubland regions, which makes it less likely that understory fires are a
dominant driver. A recent study has shown that a combined analysis of satellite data of CO and NO,, can provide top-down
constraints on combustion efficiency and emission factors (van der Velde et al., 2021). Additionally, a burned-area analysis of
high-resolution Sentinel-2 data over Africa concluded that missed small fires in GFED4s might result in an underestimate of

fire carbon emissions of 31% (Ramo et al., 2021). The updated version of the FINN fire inventory (v2.5; (Wiedinmyer et al.,
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2022)) also increases fire CO emissions in the Amazon basin by 102% (averaged over the 2003-2018 period) compared to
the version used in this work (v1.5; (Wiedinmyer et al., 2011)). These new developments show that there is perspective on
reconciling our top-down estimates with bottom-up efforts, which can be further informed by the spatio-temporal patterns of
the higher emissions we derive.

An operational framework that estimates CO fire emissions based on satellite-retrieved CO columns and prior information
(e.g. FRP) can provide unique and timely information about regional variability in fires. The Copernicus Atmospheric Mon-
itoring Service (CAMS) already provides an operational data assimilation framework in which, among other data products,
MOPITT-TIR CO column retrievals are assimilated (Flemming et al., 2017). We identify two aspects in which the CAMS
analysis can be improved. Most importantly, in the CAMS system the atmospheric abundance of CO is optimized, instead of
CO emissions. We suggest that a next development of a CAMS-like system should consider emission optimization for a more
physically realistic end-product that can be used to inform on variations in sources, such as in Miyazaki et al. (2020). Secondly,
we show that the CAMS OH fields produced in full-chemistry simulations are very low over the Amazon, which other studies
have indicated is due to incomplete NOx sources (Wells et al., 2020), or incomplete chemical mechanisms (e.g. Lelieveld
et al., 2008; Taraborrelli et al., 2012). Such an underestimate in OH can mask the GFAS underestimate that we find here, which
has important implications for the interpretation of fire emissions. Operational CO emissions can provide a rich proxy for fire
variability and deforestation. Moreover, the immediate context provided by a long-term, consistently derived timeseries of CO
emissions is highly valuable for interpretation of recent fire events. This would be timely, considering that recent changes in the
natural and political climate surrounding the Amazon (INPE, 2020; Silva Junior et al., 2020; Fonseca et al., 2019) necessitate

active fire monitoring by as many independent proxies as possible.

4 Conclusions

In this study, we present a 2003-2018 timeseries of fire CO emissions in the Amazon domain. Importantly, our derived emis-
sions are robust against the exchange of prior distributions of fires from several bottom-up efforts, even at the scale of specific
Brazilian states and land-use types. Moreover, we find that simulations with optimized fire emissions better reproduce indepen-
dent aircraft observations than simulations with prior emissions from the GFAS or FINN inventories. The largest uncertainty in
the inverse system derives from uncertainty in CO production from non-methane hydrocarbons (NMHCs; see Supp. 2.1), and
we conservatively estimate a combined uncertainty in interannual variations of basin-wide emissions of 10-15 Tg/year (Sect.
3.3.3). We see this robust method to detect, attribute and quantify fire CO emissions in the Amazon as a valuable addition to
the palette of existing fire monitoring methods for the region.

Variations in CO emissions over our 2003-2018 study period are a combination of strong interannual variations and a long-
term decrease, mostly between 2003-2012. Interannual variations are closely correlated with variations in the Amazonian water
balance, evident from a strong link with soil moisture even at state-level. In contrast, the long-term decline in CO emissions
over the 2003-2012 period mirrors a decrease in deforestation rates, especially so in forested regions. These results emphasize

the positive effect of deforestation abatement policies, as well as the potential impact of increased drought frequency in a
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changing climate. As such, sustained efforts to reduce deforestation can reduce the impact of climate change on fire risk, while

a return to deforestation rates of the early 2000’s in a drier climate likely results in enhanced fire risks.
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